The implicit function theorem for ultradifferentiable mappings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Implicit Function Theorem and Implicit Parametrizations∗

We discuss a differential equations treatment of the implicit functions problem. Our approach allows a precise and complete description of the solution, of continuity and differentiability properties. The critical case is also considered. The investigation is devoted to dimension two and three, but extensions to higher dimension are possible. MSC: 26B10, 34A12, 53A05. keywords: implicit functio...

متن کامل

The Implicit Function Theorem for Continuous Functions

In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence, some versions of these classic theorems are proved when we consider differenciable (not necessarily C) maps.

متن کامل

Explicit Implicit Function Theorem for All Fields

Remark 1. The conditions P (X, f(X)) = 0 and f(0) = 0 imply that P (0, 0) = 0. As P ′ Y (0, 0) is also 0, the sums in both expressions of [X]f are finite. Remark 2. When P (X,Y ) = Xφ(Y ), where φ(X) ∈ K[[X ]] and φ(0) 6= 0, we obtain the Lagrange inversion formula [X]f = [Y ](φ(X) − Y φ(X)φ(X)). If the characteristic of K is 0, we also have the following form [X]f = [Y ]φ(Y ). Remark 3. When P...

متن کامل

Robinson ’ s implicit function theorem

Robinson’s implicit function theorem has played a mayor role in the analysis of stability of optimization problems in the last two decades. In this paper we take a new look at this theorem, and with an updated terminology go back to the roots and present some extensions.

متن کامل

The Contraction Mapping Theorem and the Implicit Function Theorem

denote the open ball of radius a centred on the origin in IR. If the function ~g : Ba → IR d obeys there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba (H1) ‖~g(~0)‖ < (1−G)a (H2) then the equation ~x = ~g(~x) has exactly one solution. Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Contraction” in the name of the theorem. Because G <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1979

ISSN: 0386-2194

DOI: 10.3792/pjaa.55.69