The implicit function theorem for ultradifferentiable mappings
نویسندگان
چکیده
منابع مشابه
The Implicit Function Theorem and Implicit Parametrizations∗
We discuss a differential equations treatment of the implicit functions problem. Our approach allows a precise and complete description of the solution, of continuity and differentiability properties. The critical case is also considered. The investigation is devoted to dimension two and three, but extensions to higher dimension are possible. MSC: 26B10, 34A12, 53A05. keywords: implicit functio...
متن کاملThe Implicit Function Theorem for Continuous Functions
In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence, some versions of these classic theorems are proved when we consider differenciable (not necessarily C) maps.
متن کاملExplicit Implicit Function Theorem for All Fields
Remark 1. The conditions P (X, f(X)) = 0 and f(0) = 0 imply that P (0, 0) = 0. As P ′ Y (0, 0) is also 0, the sums in both expressions of [X]f are finite. Remark 2. When P (X,Y ) = Xφ(Y ), where φ(X) ∈ K[[X ]] and φ(0) 6= 0, we obtain the Lagrange inversion formula [X]f = [Y ](φ(X) − Y φ(X)φ(X)). If the characteristic of K is 0, we also have the following form [X]f = [Y ]φ(Y ). Remark 3. When P...
متن کاملRobinson ’ s implicit function theorem
Robinson’s implicit function theorem has played a mayor role in the analysis of stability of optimization problems in the last two decades. In this paper we take a new look at this theorem, and with an updated terminology go back to the roots and present some extensions.
متن کاملThe Contraction Mapping Theorem and the Implicit Function Theorem
denote the open ball of radius a centred on the origin in IR. If the function ~g : Ba → IR d obeys there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba (H1) ‖~g(~0)‖ < (1−G)a (H2) then the equation ~x = ~g(~x) has exactly one solution. Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Contraction” in the name of the theorem. Because G <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1979
ISSN: 0386-2194
DOI: 10.3792/pjaa.55.69